Pancreatic Neoplasms: What Can We Do?

Sandeep N. Patel, DO
UT Health
San Antonio, Texas

Pancreatic Neoplasms

Ductal adenocarcinoma (85%)

Neuroendocrine

Cystic neoplasms

Pancreatic Neoplasms

• Ductal adenocarcinoma (85%)

Neuroendocrine (6%)

Cystic neoplasms

Review epidemiologic facts

How we can identify high-risk individuals

Early detection tools

Review epidemiologic facts

How we can identify high-risk individuals

Early detection tools

Review epidemiologic facts

How we can identify high-risk individuals

Early detection tools

Review epidemiologic facts

How we can identify high-risk individuals

Early detection tools

How Common is Pancreatic Cancer?

How Common Is This Cancer?

Compared to other cancers, pancreatic cancer is relatively rare.

In 2018, it is estimated that there will be 55,440 new cases of pancreatic cancer and an estimated 44,330 people will die of this disease.

How Common is Pancreatic Cancer?

2nd leading cause of cancer deaths by 2030

~ 60,000 deaths

How Many People Survive 5 Years Or More after Being Diagnosed with Pancreatic Cancer?

Relative survival statistics compare the survival of patients diagnosed with cancer with the survival of people in the general population who are the same age, race, and sex and who have not been diagnosed with cancer. Because survival statistics are based on large groups of people, they cannot be used to predict exactly what will happen to an individual patient. No two patients are entirely alike, and treatment and responses to treatment can vary greatly.

Based on data from SEER 18 2008-2014. Gray figures represent those who have died from pancreatic cancer. Green figures represent those who have survived 5 years or more.

How Many Survive Pancreatic Cancer? Any improvement?

SEER 9 5-Year Relative Survival Percent from 1975-2010, All Races, Both Sexes.

Modeled trend lines were calculated from the underlying rates using the Joinpoint Survival Model Software.

 Pancreatic ductal adenocarcinoma is one of the leading causes of cancer-related mortality.

• 5 year survival for patients with PC is 8.5%

Almost always detected in advanced stage

What can we do?

- Prevention
 - Identify high-risk individuals
 - Screen
 - Surveillance

Early Detection

Expedite Treatment

FACT

The lifetime risk of developing PC in the general population is estimated to be 1.6%.

Screening not recommended for general population

FACT

High-Risk:

Patients having a >5% lifetime risk or 5x RR of developing PC.

Screening recommended for high-risk population

Who Gets Pancreatic Cancer?

Risk Factors

Minor

- Age:
 - >55
- Gender:
 - M>>F
- Race:
 - African Americans
- Cigarette smoking
- Obesity
- Diabetes

Major

- Chronic pancreatitis
- Pancreatic cystic lesions
- Family history of PC
- Genetic Syndromes:
 - BRCA 2
 - Familial Melanoma
 - PRSS 1
 - Peutz Jeghers
 - HNPCC

Age Distribution in PC

Smoking

Meta-analysis of 82 studies 2008: RR 1.7 in current and 1.2 in former smokers.

Cigarette smoking increases the risk of pancreas cancer:
 75% compared to non smokers.

Effect of smoking persists 10 years after cessation

Pancreatic Cancer Risk Factors Obesity

RR 2.08 with BMI >30 vs <25

 Burden study in UK: 12.8% of PC in men and 11.5% of PC in women

 Recent meta-analysis confirmed that both general obesity and abdominal obesity increases the risk of PC.

[•] Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med. 2003;348:1625–1638.

[•] Parkin DM, Boyd L, Walker LC. 16. The fraction of cancer attributable to lifestyle and environmental factors in the UK in 2010. Br J Cancer. 2011;105 Suppl 2:S77–S81.

Diabetes Mellitus

Both type 1 and 2 doubles the risk of PC

 US National Cancer Institute study: 1.8 fold increased risk particularly in Hispanic and Asian compared to White and Blacks.

 Oral antidiabetic agents and insulin associated with reduced risk of PC

Maisonneuve P, Lowenfels AB. Risk factors for pancreatic cancer: a summary review of meta-analytical studies. Int J Epidemiol. 2015;44:186–198. Batabyal P, Vander Hoorn S, Christophi C, Nikfarjam M. Association of diabetes mellitus and pancreatic adenocarcinoma: a meta-analysis of 88 studies. Ann Surg Oncol. 2014;21:2453–2462.

Li D, Tang H, Hassan MM, Holly EA, Bracci PM, Silverman DT. Diabetes and risk of pancreatic cancer: a pooled analysis of three large case-control studies. Cancer Causes Control. 2011;22:189–197

Bosetti C, Rosato V, Li D, Silverman D, Petersen GM, Bracci PM, Neale RE, Muscat J, Anderson K, Gallinger S, et al. Diabetes, antidiabetic medications, and pancreatic cancer risk: an analysis from the International Pancreatic Cancer Case-Control Consortium. Ann Oncol. 2014;25:2065–2072.

Pancreatic Cancer Risk Factors Chronic pancreatitis

Endoscopic Ultrasound

Parenchymal

hyperechoic foci hyperechoic strands hypoechoic lobules cysts Califications Iregular size

Ductal

Dilatation dilated SB irregular MD hyperechoic margins stones

Chronic pancreatitis

RR: 2.7-5.1%

Endoscopic Ultrasound

Familial and Genetic

- Sporadic PC (85-90%)
- Genetic cause or runs in the families (10-15%)
 - Familial pancreatic cancer (FPC)
 - Pair of affected first-degree relatives (parent-child or sibling)
 - -Individuals with 2 FDR: 6.4-fold risk (ie 8-12% life time risk of PC)
 - -Individuals with 3 FDR: 32-fold risks (ie 40% life time risk of PC)

Familial and Genetic

- Sporadic PC (85-90%)
- Genetic cause or runs in the families (10-15%)
 - Genetic predisposition associated with PC:

BRCA - 2 Familial Melanoma PRSS – 1 Peutz – Jeghers

HNPCC

Genetic

Gene(s)	Common name	Risk of pancreatic cancer
STK11/LKB1 ³⁵	Peutz-Jeghers syndrome	RR = 132 (95% CI, 44-261)
PRSS 1 ³⁶	Hereditary pancreatitis	SIR = 53 (95% CI, 23-105)
CDKN2A ³⁷⁻³⁹	n/a	RR = 13-39
MLH1, MSH2, MSH6 ^{17,40}	Lynch syndrome*	RR = 9-11
TP53 ⁴¹	Li-Fraumeni syndrome	RR = 7.3 (95% CI, 2-19)
CFTR ^{42,43}	Cystic fibrosis, hereditary pancreatitis	RR = 5.3 (95% CI, 2.4-10.1)
APC ⁴⁴	Familial adenomatous polyposis	RR = 4.46 (95% CI, 1.2-11.4)
BRCA2 ⁴⁵	n/a	RR = 3-9
ATM ⁴⁶	Ataxia-telangiectasia	RR = 3.92 (95% CI, 0.44-14.2)
BRCA1 ⁴⁷	n/a	RR = 2.26 (95% CI, 1.26-4.06)
Familial pancreatic cancer in 1 or 2 first-degree relatives ^{48,49}	n/a	RR = 4-7

RR, Relative risk; CI, confidence interval; SIR, standardized incidence ratio; n/a, not applicable.

^{*}Also known as hereditary nonpolyposis colorectal cancer.

Overview

^{*} for continuous variables the relative risk is expressed for the highest versus lowest quintile

Pancreatic Cancer

Early Diagnosis

Late Symptoms

- Jaundice
- Weight loss
- Abdominal pain
- Pruritus
- Dark urine
- Acholic stools

Pancreatic carcinoma Signs

- New-onset diabetes
- Depression

Evaluation

• Blood Work

- *Imaging*
 - -US, CT, MRI/MRCP
- Tissue sampling
 - -EUS/FNA
 - -ERCP

Blood work

Elevated Blood Chemistries:

CEA

Non-invasive imaging

Abdominal US

Non-invasive imaging

CT with oral and IV contrast:

Normal exam

Non-invasive imaging

- Pancreatic mass
- "double duct sign"
 - Dilated bile ducts
 - Dilated pancreatic duct

CT with oral and IV contrast:

Non-invasive imaging

MRI/MRCP:

Invasive imaging - ERCP

ERCP

Biliary and pancreatic strictures

Goal:

- Sampling:
 - biopsy, brushing
 - direct bxs (Choledochoscopy)
- Palliation of symptom
 - plastic vs metal stent

Sampling of Strictures

Yield:

brush ~ 30%

biopsy ~ 30%

35-50%

Choledochoscopy

Directed biopsies

Analysis of indeterminate strictures:

intrinsic

Sensitivity 78% (21/27)
Specificity 64% (7/11)
Positive Predictive Value 95% (21/22)
Negative Predictive Value 58% (7/12)

Sensitivity 59% (23/39)
Specificity 75% (3/4)
Positive Predictive Value 100% (23/23)
Negative Predictive Value 20% (3/15)

Invasive imaging - EUS

Endoscopic UltraSound:

Endoscopic Ultrasound Pancreatic cancer

Tissue acquisition: FNA

Endoscopic Ultrasound - FNA Sensitivity

Lesion Size		СТ	EUS FNA
(mm)	n	sensitivity	cytology correct
≤ 10	16	6%*	78%
11-20	34	38%*	81%
21-30	23	61%*	91%
>30	34	91%	95%
	107	55%*	87%

^{*}p<.005 compared with EUS sensitivity

Endoscopic Retrograde Cholangio Pancreatography Biliary stenting

Safe and effective in palliating obstructive jaundice

- CAREFUL PATIENT SELECTION
- EMPLOY GOOD TECHNIQUE

Plastic vs Metal

ERCP-Palliation

Reestablish biliary drainage ------ symptom relief

- Jaundice
- Pruritus
- Abdominal pain
- Nausea/vomiting

Stenting Strictures

Plastic -----

- Removable
- Inexpensive

Stenting Strictures

Metal

• Patency: 9-12 mo

• Expensive +/- removable

Cystic Lesions of the Pancreas

Cystic Neoplasms of the Pancreas

Cystic Neoplasms of the Pancreas

Mucinous cystadenoma/carcinoma

- Macrocystic lesions
- Viscous, mucoid fluid
- Fluid analysis: high CEA, low amylase, DNA analysis
- Mucin-secreting epithelial cells
- Malignant potential

Intraductal Papillary Mucinous Neoplasm (IPMN)

- First described in 1982
- Proliferation of mucus-producing ductal epithelial cells.
- Precancerous lesion
- Rate of progression to carcinoma slow

<u>features:</u>

- Patulous ampullary orifice
- Dilated pancreatic duct
- Mucus secretion

Intraductal Papillary Mucinous Neoplasm

(IPMN)_{CT}

ERCP

MRCP

Evaluation of Intraductal Papillary Mucinous Neoplasm (IPMN)

Current limitations:

Pre-operative planning:

- Whipple
- Distal pancreatectomy
- Total pancreatectomy

What is the extent of disease?

Is there multi-centric disease (~20%)?

Intraductal Papillary Mucinous Neoplasm

(IPMN)

Diagnosis?

Evaluation

Pt with suspected pancreatic ca **EUS-FNA** Non-invasive imaging surgery **ERCP**

Conclusion

- ✓ Recognize patients @ high-risk of developing PC.
 - Familial
 - Genetic
 - Chronic pancreatitis
 - Pancreatic cystic neoplasms

- New-onset diabetes
- Obesity
- Smoking

Age

- ✓ Understand the modalities available for *diagnosing* pancreatic cancer:
 - EUS

Pancreatic Carcinoma Conclusion

- ✓ Understand the *general therapies* available:
 - Surgery for those with resectable disease
 - Neoadjuvant therapy for borderline patients
 - Endoscopic palliation

